
PTEP: The Parallel Telemetry Processor
Jeffrey S. Norris, Paul G. Backes, Eric T. Baumgartner

Jeffrey.S.Norris@jpl.nasa.gov, Paul.G.Backes@jpl.nasa.gov, Eric.T.Baumgartner@jpl.nasa.gov
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

Abstract—The Parallel Telemetry Processor (PTEP), a high-
speed, robust, and extensible telemetry processing system is
discussed in this paper. The system, written in Java,
provides a multithreaded task-dispatching framework for
downlink processing that allows existing data processing
applications to be easily integrated into the processing
pipeline. The system provides users with a color-coded
flowchart that indicates the progress of packets through the
system and displays intermediate data products as they are
generated. Packets that cause processing errors are stored in
an error queue for later review while the system continues to
process new packets. PTEP currently processes telemetry
from 7 different instruments on the FIDO prototype Mars
rover at JPL, including multiple stereo cameras, a
spectrometer, and a microscope. PTEP generates 21 science
data products (5 megabytes of data) for every stereo image
pair taken by the rover. Throughput is approximately 2
packets per minute, making it possible to process an entire
downlink from the rover in minutes.

TABLE OF CONTENTS

1. INTRODUCTION
2. SPECIFICATION OF SYSTEM REQUIREMENTS
3. DESIGN AND OPERATION OF PTEP
4. SYSTEM PERFORMANCE RESULTS
5. CONCLUSIONS

1. INTRODUCTION

The speed at which data received from a planetary rover or
lander can be processed into final science data products has
a direct impact on the overall efficiency of robotic planetary
exploration mission operations. An efficient and reliable
downlink processing system effectively lengthens the
amount of productive planning time that is available to the
operations team for the design of each sequence sent to the
spacecraft. Multithreaded and pipelined downlink
processors greatly improve performance by minimizing the
idle time of the processing platform’s slowest resources
(typically the network and storage devices) and making use
of additional CPU’s on multiprocessor computers. In
addition, fault tolerant downlink processing systems
minimize downtime in mission operations.

PTEP, the Parallel Telemetry Processor, was designed and
built to process all of the data received from the 7
instruments on the FIDO prototype Mars rover [1]. Several
of the data products produced by PTEP are shown in figure

1. PTEP is capable of processing an arbitrary number
(typically 3-4) of downlink packets from the rover
simultaneously, and automatically takes advantage of all of
the physical processors available on the machine. PTEP
provides its user with a graphical monitoring interface that
illustrates the steps in the downlink processing pipeline and
indicates the status of each packet currently being
processed. When processing errors occur, the affected
packets are moved into an error queue for later review while
processing of arriving packets continues. At any time, a
user can access detailed information about a processing
error, correct the problem, and resume processing of the
packet.

Below, the requirements that were established for a reliable
high-speed downlink processing system during the
development of PTEP are outlined, followed by a detailed
description of the design and operation of the system.
System performance data is included in the fourth section,

Figure 1 - A few of the data products that
PTEP generates. From top, left to right: image

with elevation overlay, overhead elevation
view, color balanced image, stereo anaglyph
image, color micro-imager image, infrared

point spectrometer data plot.

and suggestions for further work are discussed at the end of
the paper.

2. SPECIFICATION OF SYSTEM REQUIREMENTS

During the design of PTEP, several requirements were
generated. The goal of these requirements is to define
standards for the evaluation of existing and future downlink
processing system designs. The requirements fall into 4
categories: performance, fault tolerance, interactivity, and
extensibility.

Performance

Simply put, the downlink system should process data
quickly, and take advantage of all of the resources on the
processing computer. Pipelining (starting a series of
processing steps on a second packet before the last steps are
complete for the first packet) and parallelization (taking
advantage of multiple processor machines) are two
techniques that can greatly increase the performance of a
downlink processing system.

In a typical downlink processing application, the
performance-limiting resource is the permanent storage
device where downlink data products are being saved.
Pipelined and parallel architectures improve the overall
performance of the system by keeping this limiting resource
in use as much as possible and allowing one packet to use
the computer’s CPU while another is waiting for a disk
transfer to complete.

Fault Tolerance

Since downlink processing systems often run unattended,
the principal goal for a fault tolerant downlink processing
system is to handle any problems in a way that allows the
system to continue processing newly received packets if at
all possible. To this end, when the processing system
encounters a corrupt data packet or an error occurs in
processing, the problem should be handled gracefully. If the
problem can be localized to a particular data packet, the
system should isolate that packet and continue to process
others if possible. This minimizes downtime and removes
the necessity for an administrator to constantly monitor the
system.

When an error occurs, any information related to that error
should be stored for later review by the user. After the error
has been assessed and corrected, the user should be able to
continue the processing of the packet or remove it from the
queue entirely.

Interactivity

The user should be able to monitor the status of all packets
being processed, access detailed information about errors,
and modify parameters during processing. As a packet
passes through successive processing stages, the user should

be able to view intermediate data products in order to
evaluate the progress of a packet through the system.

Extensibility

It should be straightforward to modify the system to support
new instruments and processing steps. Mission science
team members often develop their own processing
applications for data from a particular instrument, and the
downlink processing system should allow these applications
to be easily integrated into the processing pipeline. This
extensibility should not compromise the overall stability of
the system- if the new processing application generates an
error, the system should handle it gracefully.

3. DESIGN AND OPERATION OF PTEP
Data processing in PTEP is accomplished using virtual
processors. PTEP can be configured to have any number of
virtual processors, regardless of the number of physical
processors on the processing computer. When data arrives
from a robot, PTEP assigns the data to an available virtual
processor. That virtual processor is then responsible for
advancing the data through all of its required processing
steps and handling any errors that occur. When the
processor successfully finishes processing the data or arrives
at an error condition that requires user intervention, it saves
the data and indicates to the system that it is free to process
new data.

PTEP usually uses 3-4 virtual processors when supporting
operation of the FIDO (Field Integrated Design and
Operations) rover. The progress of data from the FIDO
rover through PTEP is shown in figure 2. When FIDO
acquires data using one of its instruments, it packages the
data into a discrete “packet” and transmits it back to the
operations center. PTEP detects the new packet when it
arrives and places it into the input queue, along with other
packets that are waiting to be processed. The packet waits
in the input queue until all of the packets that arrived before
it have been processed and a virtual processor becomes
available. PTEP then assigns the packet to the available
virtual processor, which removes it from the input queue
and begins processing the data.

The virtual processor begins processing the packet by
determining which instrument produced the data. When the
packet type has been determined, the virtual processor
begins applying the necessary processing steps for that
packet type. For example, images taken by the front hazard
cameras on FIDO are processed to produce range maps,
synthetic overhead images, 3D triangle meshes, camera
models, and numerous JPEG image products that help
operators of the FIDO rover to visualize terrain elevation,
slope, and range map confidence. Data from FIDO’s
Infrared Point Spectrometer (IPS) is plotted and stored for
later processing by the FIDO science team. These products
are stored in a structured database used by The Web

Interface for Telescience (WITS), the FIDO rover
operations tool [2].

If a virtual processor encounters an error while processing a
packet, it moves the packet into the error queue. If possible,
it stores information describing the nature of the error and
the step in the processing pipeline where the problem
occurred. Once the packet has been stored in the error
queue, the virtual processor is free to begin processing a
new packet. The packet that generated the error remains in
the error queue until a user reviews the error and either
instructs the system to restart processing of the packet or
deletes the packet from the system.

When a virtual processor successfully finishes processing a
data packet, it moves the packet to an archive of all
successfully processed packets. A user can later choose to
retrieve a packet from this archive for further processing or
clear the packet from the archive when it is no longer
needed. The data products produced during processing are
then made available to the rover’s operations tools.

PTEP’s Graphical Monitoring Interface

Throughout the above procedure, PTEP provides a graphical
interface to the user that shows the contents of the packet
queues, as well as status of each packet currently being
processed. A screenshot of PTEP’s user interface is shown
in figure 3. The top half of PTEP’s interface is devoted to
the processing flowchart, which describes the processing
steps that are applied to each packet type. Each packet

starts at the top of the flowchart and moves downwards
through the processing steps for its instrument type. The
flowchart is built automatically at runtime, and
automatically reflects changes made to the processing code
for a packet. Each packet currently being processed by a
virtual processor is represented as a colored triangle. As a
packet moves through its processing steps, its arrow moves
through the corresponding boxes on the processing
flowchart. In figure 3, the yellow triangle corresponds to
virtual processor 1, and is shown in the “Write Anaglyphs”
step of the “Hazcam/Bellycam” instrument flow.

Directly below the processing flowchart are four slots that
display the latest intermediate data product produced by a
virtual processor. Each slot is bracketed by colored bars
that correspond to the colored triangles in the processing
flowchart. The first picture in this row is the last
intermediate product produced by virtual processor 1, which
corresponds to the yellow triangle in the processing
flowchart. These intermediate data products allow a user to
monitor a virtual processor’s progress and quickly diagnose
errors.

Below the intermediate data product section are the input
and error queues. The input queue shows packets that have
either recently arrived from the rover or have been manually
inserted by the user using the “Add” button. New items
added appear at the bottom of this list. The user can modify
the order of items in the list to force particular packets to be
processed before others. This allows a user to manually
prioritize particular instruments or packets.

Waiting for transfer

Waiting for free virtual
processor in input queue

Completed

Waiting for user
intervention in

error queue
Processing

Error occurred during
processing

Error corrected by user,
packet restarted

Processing completed
successfully

Packet transmitted to
mission operations center

Free processor
assigned to packetUser requests

re-processing
of packet

Data Packet
acquired by robot

Figure 2 - The life cycle of a packet in PTEP

Data viewed by
operations tools

Yellow Processor
Intermediate Data

Product

Yellow Processor
Progress Indicator

Instrument
Processing

Steps

Instruments

Input
Queue

Error
Queue

Processing
Flowchart

Intermediate
Data

Products

Packet
Queues

Figure 3 - PTEP’s graphical user interface

The error queue holds all of the packets that generated an
error during processing. If the user highlights one of these
packets and clicks the “Details” button, a window is
displayed describing the nature of the error. While this
window is visible, a red arrow appears on the processing
flowchart indicating the step at which the error occurred.
These features allow the user to quickly ascertain the nature
and location of the problem. When the user believes he has
corrected the problem, he can click the “Retry” button.
This moves the packet from the error queue to the input
queue for reprocessing.

Extending PTEP

In the FIDO rover task, PTEP is often expected to
accommodate modifications in the processing pipeline.
These modifications typically take the form of adjustments
to existing steps, the addition of new steps, or operations in
support of other downlink processing systems. Several
characteristics of PTEP’s design make these modifications
straightforward.

First, the processing flowchart in PTEP’s graphical
monitoring interface is built automatically at runtime.
When a new step is added in PTEP’s source code, the
programmer includes standardized expressions at the
beginning and end of the step that allow PTEP to update the
flowchart and track errors that occur during that step.

Second, although PTEP is written in Java, it has a
standardized interface to external programs written in any
language. A planned enhancement to PTEP will allow a
user to add steps using external programs without any
modification to PTEP’s source code. This will allow a user
to modify the processing pipeline at runtime.

4. SYSTEM PERFORMANCE RESULTS

This section provides a brief discussion of typical
performance achieved running PTEP on a Sun UltraSparc
80 with 4 processors. The data was acquired using the
“perfmon” utility running on a separate machine. The three
charts in this section each illustrate different performance
characteristics with PTEP configured to use a varying
number of virtual processors (see the previous section for a
description of virtual processors). Since PTEP is written in
Java, is uses the Java virtual machine to automatically map
the processing work across all of the available physical
processors, regardless of the number of virtual processors
that PTEP is configured to use.

Figure 4 shows the amount of time required to process 5
navcam stereo packets from the FIDO rover into final
science products. PTEP generates 21 science data products
from each packet (about 5 megabytes of data). It is very
important to note that even in the single virtual processor
case, PTEP is attempting to use all four physical processors
on the computer to process the data. Clearly, adding
additional virtual processors greatly improves processing

efficiency. This significant increase in performance occurs
because the processing operations on a single packet must
occur in a serial fashion, forcing the system to wait for a
step to complete before beginning the next. For this reason
downlink processing is an excellent domain for multi-
threaded software.

A clarifying explanation for this increase in performance is
illustrated in figure 5. This chart shows the average number
of disk transfers per second made during the processing of
the 5 packets. On one hand, it’s unsurprising that there is a
higher rate of disk transfers in the cases with more
processors since the same processing operations are
completed in a shorter amount of time with more virtual
processors (as was indicated in the prior table). However,
what is important to note is that in the single processor case
the computer’s disk is clearly vastly underutilized. Since
the computer’s disk is the typically the bottleneck in a
downlink processing system, changes that bring it closer to
100% utilization generally drive the system to optimum
performance.

The benefit of PTEP’s multithreaded virtual processor
architecture is perhaps shown most clearly in figure 6. This
figure shows physical processor utilization during the
processing of 5 packets, with three different plots
representing the 1, 2, and 3 virtual processor cases. Note
that the in the single processor case, the utilization of the
physical processors of the machine never exceeds 50%,

Time to process 5 packets with varying numbers
of virtual processors

363

208

152

0 100 200 300 400

1

2

3

N
um

be
r o

f v
irt

ua
l

pr
oc

es
so

rs

Processing time (seconds)

Figure 4 - Processing Time

Disk transfers per second with varying numbers
of virtual processors

10.36

13.89

16.53

0.00 5.00 10.00 15.00 20.00

1

2

3

N
um

be
r o

f v
irt

ua
l

pr
oc

es
so

rs

Average disk transfers per second

Figure 5 - Disk Utilization

even though PTEP is attempting to fully utilize all of the
processing capability of the machine. Without this data, an
external observer might decide that a legitimate way to
increase the performance of the single virtual processor
downlink processor would be to simply add more
processing power to the system. Clearly, this would not
result in a large increase in performance since the single
processor system is already far from fully utilizing the
system. In the 2 and 3 virtual processor cases, PTEP comes
much closer to making use of the full processing potential of
the computer.

5. CONCLUSIONS

Several multithreading techniques have been shown to
vastly improve the efficiency of downlink processing, even
on machines with relatively few processors. PTEP has
demonstrated these improvements by greatly reducing the
downlink processing turnaround time of the FIDO rover
operations team.

Some of PTEP’s critical innovations lie in its automatically
constructed graphical monitoring interface. This interface
could be easily adapted to monitor any complex process. Its
error tracking features would make it ideal for any serial
process composed of heterogeneous tasks.

Two areas have been identified as areas for potential
enhancements to PTEP. First, PTEP’s support for
processing applications written in another language could be
enhanced to allow the addition of these steps without
modification to PTEP’s source code. If these external
programs were accompanied by a configuration file defining
their parameters, inputs, and outputs, PTEP could allow a
user to graphically connect several of these steps together
without requiring the user to manually specify these values.
Potentially, adapting PTEP to a new task would require no
new coding at all- a user would simply collect the necessary

processing applications and instruct PTEP when to use
them.

Another interesting area for future research would be to
allow PTEP to monitor the load on the computer in real
time, dynamically adding and deleting virtual processors
from the system in an effort to maintain 100% utilization of
the computer’s resources. This could also be used to
prevent PTEP from taking all of the computer’s resources if
the computer is supporting other tasks.

ACKNOWLEDGEMENTS

The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration.

REFERENCES

[1] E. T. Baumgartner, "In-Situ Exploration of Mars using
Rovers," Proceedings of the AIAA Space 2000 Conference,
AIAA Paper# 2000-5062, Long Beach, CA, September
2000.

[2] Paul Backes, Jeffrey S. Norris, Jeffrey Slostad, Robert
Bonitz, Kam Tso, and Greg Tharp, “Mars Polar Lander
Mission Distributed Operations,” IEEE Aerospace 2000,
March 2000.

Jeff Norris is a computer scientist and
member of the technical staff of the
Autonomy and Control Section at the Jet
Propulsion Laboratory. At JPL, his work is
focused in the areas of distributed operations
for Mars rovers and landers, secure data
distribution, and science data visualization.
Jeff is a member of the ground data systems

Physical processor utilization with varying numbers of virtual
processors

0

20

40

60

80

100

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351

time (in seconds)

Ph
ys

ic
al

 p
ro

ce
ss

or
 u

til
iz

at
io

n
(p

er
ce

nt
)

3 virtual processors

2 virtual processors

1 virtual processor

Figure 6 - Physical Processor Utilization

and operations teams for the 2003 Mars Exploration Rover
Mission, and is contributing to the development of the rover
command software suite. He received his Bachelor’s and
Master’s degrees in Electrical Engineering and Computer
Science from MIT. While an undergraduate, he worked at
the MIT Media Laboratory on data visualization and media
transport protocols. He completed his Master’s thesis on
face detection and recognition at the MIT Artificial
Intelligence Laboratory. He now lives with his wife,
Kamala, in Azusa, California.

Eric Baumgartner is a group leader in the
Mechanical and Robotics Technology
Group and a senior member of engineering
staff in the Science and Technology
Development Section at JPL. At JPL, Dr.
Baumgartner serves in a systems
engineering capacity for the development
of advanced planetary rovers and also contributes to
technology developments in the area of robotic sensing and
control. He has recently joined the flight rover program at
JPL and will contribute to the development of twin Mars
Exploration Rovers that will land on the Martian surface in
2004. Previous to joining JPL, he was an Assistant
Professor in the Mechanical Engineering Department at
Michigan Technological University in Houghton, Michigan.
In addition to his work at JPL, Dr. Baumgartner also
continues his teaching duties by instructing a design course
at the University of California, Los Angeles (UCLA). Dr.
Baumgartner received his B.S. degree in Aerospace
Engineering from the University of Notre Dame in 1988, the
M.S. degree in Aerospace Engineering from the University
of Cincinnati in 1990, and the Ph.D. degree in Mechanical
Engineering from the University of Notre Dame in 1992.

Paul Backes is a technical group leader in
the Automomy and Control section at the
Jet Propulsion Laboratory, Pasadena, CA,
where he has been since 1987. He received
the BSME degree from U.C. Berkeley in
1982, and MSME in 1984 and Ph.D. in
1987 in Mechanical Engineering from
Purdue University. He is currently responsible for
distributed operations research for Mars lander and rover
missions at JPL. Dr. Backes received the 1993 NASA
Exceptional Engineering Achievement Medal for his
contributions to space telerobotics (one of thirteen
throughout NASA), 1993 Space Station Award of Merit, Best
Paper Award at the 1994 World Automation Congress,
1995 JPL Technology and Applications Program
Exceptional Service Award, 1998 JPL Award for Excellence
and 1998 Sole Runner-up NASA Software of the Year
Award. He has served as an Associate Editor of the IEEE
Robotics and Automation Society Magazine.

